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Abstract
Sands from the dune, berm, and shore environments at Playa las Golondrinas (18° 30′ 51″ N, 67° 3′ 26″) were investigated 
to explore how beach sands could be applied as a potential environmental (geogenic) background for the local region. Grain 
size is dominantly unimodal classifying as fine to medium sand. Hydraulic conductivity values range from 1.07 cm/s (berm) 
to 1.49 cm/s (shoreface). Sample mineralogy as constrained by X-ray diffraction (XRD) reveals a dominance of quartz and 
feldspar with minor Mg-calcite, pyroxene, and olivine. Light microscopy and scanning electron microscopy-energy disper-
sive spectroscopy (SEM–EDS) support XRD data and indicate the presence of oxide-bearing lithic fragments in addition to 
biologic materials (e.g., corals. forams). Reflective spectra are consistent with XRD and microscopy. Bulk element concen-
trations determined using inductively coupled plasma—mass spectrometry (ICP-MS) are consistent with derivation from 
the arc-related rocks of Puerto Rico’s interior exhibiting LILE enrichment, Pb-enrichment, and associated Nb–Ta depletion. 
The majority of the bulk elemental concentrations are below those of average upper continental crust (UCC) values and 
element co-variation trends (e.g., wt. % Fe2O3 vs. As) are interpreted as geogenic in origin. Berm sands are enriched in Fe, 
Mn, Ni, Cr, V, and As compared to dune and shore samples and this signature is interpreted as being from a wind-driven 
winnowing effect. The exact form of As (As3+ or As5+) remains unconstrained and thus it is unknown if As is mobile in this 
environment. Reflective spectra, supported by grain size, mineralogy, and bulk chemistry, enables future remote sensing 
investigations by providing detailed constraints on sand in environmentally sensitive areas. This study therefore provides 
local context for metal pollution studies across the region.

Introduction

Sand is an important geologic media for understanding the 
bulk physical and geochemical properties of a given envi-
ronment and associated tectonic setting (e.g., Pastore et al. 
2021; Oglesbee et al. 2020; Garzanti 2019; Lirong et al. 
2017; Argyilan et al. 2015; Garzanti et al. 2013; Pettijohn 

et al. 2012; Dickinson 1985). Studies of sands can establish 
a background, or geogenic, elemental context which can then 
be used to assess the potential pollution and environmental 
contamination throughout a local area of interest (Barnes 
et al. 2020; Oglesbee et al. 2020; Matsitsi et al. 2019; Jiang 
et al. 2013). Effective geogenic background materials ide-
ally should be located away from major pollution sources. 
Beach environments are appropriate areas for geogenic 
background sampling for local areas of interest because the 
sediment source is abundant, dune materials may be stable, 
and materials can be easily visually screened for potential 
major anthropogenic contaminants (e.g., petroleum spills, 
macroplastics, and metal debris associated with the marine 
environment).

In this study, beach sands from Playa las Golondrinas 
(GOL) in northwestern Puerto Rico (Fig. 1) are investigated 
within this context to provide an environmental, geogenic, 
background for future pollution and remote sensing studies 
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across the area. Sampled materials from the GOL dune, 
berm, and shoreface environments are extensively charac-
terized for their physical and chemical properties at the bulk 
to micrometer scale. This study is the first detailed investiga-
tion of sands in Puerto Rico that specifically aims to support 
future remote sensing and pollution studies.

Geological setting

Puerto Rico is a complex geologic setting that faces numer-
ous geoenvironmental issues including hurricanes (Lin 
et al. 2020; Kwasinski et al. 2019; Boose et al. 2004; Basnet 
et al. 1992; Scatena and Larsen 1991), earthquakes, tsu-
namis (Ventura-Valentín and Brudzinski, 2022; Manaker 
et  al. 2008; Dillon et  al. 1999), landslides (Larsen and 

Torres-Sánchez 1998), and poor water quality (Sánchez-
Colón et al. 2022; Sánchez-Colón and Schaffner 2021; Sturm 
et al. 2012; Rodríguez-Martínez et al. 2006). Puerto Rico is 
also broadly recognized as an area of environmental need 
and concern within the context of environmental justice such 
as access to clean drinking water and remediation (Brown 
et al. 2018; Lloréns and Santiago 2018; McCaffrey 2018; 
Wu and Heberling 2013; Epting 2015; Skanavis 1999). Fur-
thermore, generating detailed reflective spectroscopy data 
to support hyperspectral remote sensing investigations for 
environmental management and emergency response is an 
important driver of sand and geomaterial investigations (e.g., 
Krekeler et al. 2023; Pérez Valentín and Müller 2020; LeB-
lanc et al. 2016; Tomic et al. 2012; Heggie and Amundson 
2009; Heggie and Heggie 2009; Carlson et al. 2007; Ustin 
et al. 2002).

Playa las Golondrinas (18° 30′ 51″ N, 67° 3′ 26″, Fig. 1) 
forms the basis of this study and is situated on the northern 
coast of Puerto Rico. This specific location was selected 
as it is distant from major pollution sources, urban areas, 
and agriculture, in addition to having an extensive, well-
developed dune system. The local bedrock is the Aymamón 
Limestone Formation which consists of fine crystalline 
and fossiliferous white to pale orange limestone (Monroe 
1968). The limestone is overlain by slightly fossiliferous pale 
orange to bright yellow chalk with an estimated maximum 
thickness of 200 m (Monroe 1968). Winds are dominantly 
from the east and northeast as estimated from 2000 to 2023 
data from San Juan (~ 75 miles to the east) as no direct wind 
data is available for the sampled GOL site (Iowa State Envi-
ronmental Mesonet, 2023). Annual temperatures vary from 
21° to 32° C for coastal areas and annual precipitation totals 
are approximately 150 cm for the north coast (USGS, Cli-
mate of Puerto Rico, 2023).

Analytical methods

Three sets of 5 samples each of shoreface, berm, and dune 
were obtained at Playa las Golondrinas. Approximately 
1 kg samples were acquired in Ziploc storage bags and were 
securely shipped.

Grain size characteristics

Grain size distributions were determined using standard 8″ 
ASTM mechanical brass sieves, with mesh sizes ranging 
from 38 to 6300 µm, and a Gilson mechanical shaker. Sam-
ples were dried in an oven at 60 ºC and 200 g of sand was 
then used for each sample. Data collected was evaluated in 
the Gradistat Excel program (Blott and Pye 2001) for analy-
sis and statistical evaluation. Gradistat files are provided in 

Fig. 1   a Location of Puerto Rico within the context of the Carib-
bean and Latin America. b United States Geological Survey (USGS) 
geological map of Puerto Rico (https://​www.​usgs.​gov/​media/​images/​
geolo​gic-​map-​puerto-​rico) showing sample location at Playa las 
Golondrinas and the capital city of San Juan for reference. See link 
for explanation. c Dune and berm environment of Playa las Golondri-
nas. d Shore environment of Playa las Golondrinas

https://www.usgs.gov/media/images/geologic-map-puerto-rico
https://www.usgs.gov/media/images/geologic-map-puerto-rico
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supplemental materials for reference and include a summary 
of sample mean, sorting, skewness, kurtosis, and mode.

Hydraulic Conductivity

Falling head permeameter tests were conducted with one 
sand sample from each sample site. Approximately 170 to 
270 g of dry sand was placed into a falling head permeam-
eter followed by 250 mL of tap water. The height of the 
sand and the head were recorded. After removing the stop-
per at the base of the falling head permeameter, the time it 
took the water to fall every 5 mL was recorded to calculate 
a discharge rate. To determine hydraulic conductivity (K), 
the height of the sediment was multiplied by the slope of the 
discharge rate (s) vs. head (cm). After three replicate trials, 
an average K value was calculated.

Polarized Light Microscopy (PLM)

One thin section from each sampled site (dune, berm, shore) 
was investigated using a Leica DM2700 P microscope. Cri-
teria of Nesse (2013) were used for mineral identification. 
Specific samples investigated include GOL Berm 3, GOL 
Dune 3, and GOL Shore 3. This is the same set of samples 
which were investigated via hydraulic conductivity.

Powder preparations

Sample splits from all 15 samples were powdered for sub-
sequent analysis via basic powder X-ray diffraction (XRD) 
and inductively coupled plasma-mass spectrometry (ICP-
MS). Samples were prepared using a SPEX 8000 mini-mill 
using an alumina oxide container. Milling time was 10 min 
and resulting powders were placed in snap cap plastic vials 
for temporary storage. Approximately 5 g of material was 
powdered.

Powder X‑Ray diffraction (XRD)

Basic powder X-ray diffraction (XRD) was used to iden-
tify major mineral phases with a Bruker D8 Advance 
ECO X-Ray diffractometer using Cu Kα radiation. Detec-
tion limits are estimated at a few wt. %. All sand samples 
(n = 15) were analyzed from 5º to 65º 2Ɵ, with a step size 
of 0.01º 2Ɵ at 0.5 s/step intervals. Mineral identifications 
were made using PDF cards, including quartz PDF No. 
00–046–1045, calcite PDF No. 00–047–1743, and dolomite 
No. 00–036–0426. Feldspars were identified including cal-
cian ordered albite PDF No. 00–041-1480, ordered micro-
cline PDF No. 00–019-0926, intermediate microcline PDF 
No. 00–019-0932, and orthoclase PDF No. 00–031-0966, as 
well as guidance from Chen (1977). Amphibole was identi-
fied by a (011) reflection of ~ 8.50 Å, based on a comparison 

to several PDF cards and Chen (1977). It is well-recognized 
that numerous peaks of the feldspar minerals overlap (e.g., 
Smith 2012; Chen 1977), and some feldspar peaks cannot 
be identified conclusively; however, PLM data supports the 
presence of multiple feldspars.

Scanning Electron Microscopy (SEM)

For SEM–EDS investigation, sand from the dune, berm, 
and shore environments were mounted onto a 10 mm diam-
eter aluminum stub using a carbon adhesive tab. Mounted 
samples were carbon coated using a Safematic CCU-010 
Carbon Coater. A coating thickness of ~ 10 nm of carbon 
was dispersed within a 7 × e−7  Torr vacuum. Data was 
acquired using a Zeiss 35VP field emission scanning elec-
tron microscope (FESEM) under variable pressure (VP) with 
nitrogen (N2) as the compensating gas. The FESEM has a 
backscatter detector (BSD) and an EDS detector (Bruker 
Quantax). The general sample preparation technique and 
the Zeiss FESEM instrument have been routinely incor-
porated into a variety of recent mineralogical and environ-
mental studies (e.g., Allen et al. 2024; Wudke et al. 2024; 
Flett et al. 2021; O’Shea et al. 2021; Cymes et al. 2020; 
Klein and Krekeler 2020; Lindeman et al. 2020; Oglesbee 
et al. 2020; Velázquez Santana et al. 2020; Dietrich et al. 
2019, 2018; Burke et al. 2017; Paul et al. 2017). X-ray emis-
sion lines used to identify elements observed in the Bruker 
software include O Kα = 0.525 keV; Na Kα = 1.041 keV; 
Mg K = 1.254 keV; Al K = 1.487 keV; Si Kα = 1.740 keV, 
(nominally Kβ = 1.837 keV); S Kα = 2.309 keV (nominally 
Kβ = 2.465 keV); Cl = Kα 2.621 keV; Ca Kα = 3.690 and 
Kβ = 4.012; Fe Kα = 6.399 keV and Kβ = 7.060 keV; Ni 
Kα = 7.480 keV and Kβ = 8.267 keV; Cu Kα = 8.036 keV 
and Kβ = 8.903 keV. The ubiquitous occurrence of oxygen in 
carbonate, silicate, and oxide phases (or adjacent particles); 
scatter from the aluminum stub and lacey carbon sticky tab 
and coating; and the substrate, collectively contribute Al, O, 
and C signal to EDS spectra. The detection limit for EDS 
is approximately 0.08 wt. % (e.g., Kuisma-Kursula 2000). 
Sand materials were not pre-washed in deionized water so 
as not to remove potential pollutant particulate matter or 
elements of environmental concern. In part, the ubiquitous 
observation of Na, Cl, Mg, and S is interpreted to originate 
from evaporated seawater (see supplementary Fig. 1).

Inductively Coupled Plasma—Mass Spectrometry 
(ICP‑MS)

Splits from all 15 sand samples were prepared for bulk ele-
mental analysis by ICP-MS. Sample powder was retrieved 
from the same powdered sample vial that was analyzed via 
PXRD. Six standard reference materials (SRMs), chosen 
to bracket the elemental composition of the sands, were 
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Fig. 2   Histograms showing the dominantly unimodal grain size dis-
tribution of sampled sands from the dune, berm, and shoreface envi-
ronments of Playa las Golondrinas. The X axis for all plots defines 

particle diameter in micrometers. The Y axis defines the percentage 
of each standard size classification. Data is provided in supplemental 
Table 1
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Table 1   Bulk elemental concentrations from ICP-MS indicate elevated levels of REE’s, Zr, U, and Fe-oxides consistent with the natural. Data 
for dune, berm, and shore samples are included

P2O5* TiO2* Al2O3* Fe2O3* MgO* CaO* MnO* Na2O* Sc V Cr Co Ni Cu Zn As

GS1 (Shore) 0.05 0.17 11.3 3.4 1.59 0.71 0.04 1.93 5.0 57.0 28.3 3.4 6.1 9.2 36.7 11.3
GS2 (Shore) 0.05 0.16 10.7 3.1 1.54 0.71 0.04 1.95 4.3 53.0 26.4 3.1 5.8 12.4 34.8 10.7
GS3 (Shore) 0.07 0.19 10.7 3.5 1.60 0.72 0.05 1.94 4.7 62.0 27.9 3.5 6.3 9.3 44.7 10.7
GS4 (Shore) 0.05 0.16 11.2 3.0 1.46 0.65 0.04 2.01 4.2 50.6 23.5 3.0 5.4 9.1 35.4 11.2
GS5 (Shore) 0.05 0.14 11.5 3.1 1.44 0.64 0.04 2.01 4.3 49.4 25.0 3.1 5.5 9.9 26.6 11.5
GB1 (Berm) 0.05 0.49 14.3 6.5 2.29 0.86 0.09 1.60 12.0 126.8 95.8 6.5 11.2 12.4 48.2 14.3
GB2 (Berm) 0.04 0.54 14.4 6.2 2.28 0.88 0.10 1.53 11.4 118.3 87.5 6.2 11.2 13.3 45.2 14.4
GB3 (Berm) 0.06 0.48 14.4 6.3 2.28 0.88 0.09 1.52 12.3 124.5 90.7 6.3 11.0 12.8 35.5 14.4
GB4 (Berm) 0.07 0.58 15.3 7.1 2.27 0.86 0.10 1.42 12.5 142.8 89.3 7.1 11.5 12.4 41.5 15.3
GB5 (Berm) 0.06 0.38 14.0 5.5 2.14 0.85 0.08 1.65 10.0 98.9 78.6 5.5 10.3 17.3 46.4 14.0
GD1 (Dune) 0.05 0.28 11.5 4.5 1.49 0.58 0.06 1.90 6.9 80.6 51.0 4.5 8.4 12.0 47.3 11.5
GD2 (Dune) 0.06 0.22 10.6 4.1 1.46 0.60 0.05 1.88 5.7 67.2 33.5 4.1 7.2 11.8 53.8 10.6
GD3 (Dune) 0.05 0.22 9.8 3.6 1.48 0.64 0.05 1.90 5.9 56.6 27.8 3.6 6.1 10.2 34.2 9.8
GD4 (Dune) 0.05 0.18 10.0 3.6 1.41 0.61 0.05 1.84 5.9 58.0 30.7 3.6 6.3 9.5 30.8 10.0
GD5 (Dune) 0.06 0.22 10.5 4.4 1.46 0.59 0.05 1.89 6.5 75.1 42.4 4.4 8.2 11.7 43.8 10.5
AVG. 0.05 0.29 12.02 4.52 1.75 0.72 0.06 1.80 7.44 81.38 50.55 4.52 8.02 11.57 40.33 12.02
MIN. 0.04 0.14 9.77 3.02 1.41 0.58 0.04 1.42 4.18 49.35 23.46 3.02 5.37 9.10 26.63 9.77
MAX. 0.07 0.58 15.30 7.09 2.29 0.88 0.10 2.01 12.45 142.78 95.84 7.09 11.52 17.34 53.75 15.30
ST.DEV. 0.01 0.16 1.88 1.41 0.37 0.12 0.02 0.20 3.21 32.19 28.74 1.41 2.38 2.16 7.51 1.88

Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Eu Gd Tb Dy

GS1 (Shore) 26.8 602.8 6.0 10.5 1.1 0.4 504.0 5.6 10.1 1.4 5.4 1.2 0.5 1.2 0.1 0.9
GS2 (Shore) 27.4 601.0 5.4 10.3 1.0 0.3 548.2 5.4 9.2 1.2 4.9 1.0 0.4 1.0 0.1 0.9
GS3 (Shore) 27.5 608.3 5.8 10.6 1.2 0.3 541.9 5.0 8.9 1.2 5.0 1.1 0.4 1.1 0.1 1.0
GS4 (Shore) 28.8 553.1 5.5 10.7 1.6 0.3 572.2 5.6 10.3 1.3 5.1 1.0 0.4 1.0 0.1 0.9
GS5 (Shore) 27.2 549.3 5.2 10.4 0.8 0.3 521.8 5.8 9.4 1.2 4.6 1.0 0.4 1.0 0.1 0.8
GB1 (Berm) 21.0 661.7 13.3 16.2 3.8 0.3 391.4 11.9 23.9 3.2 13.0 2.8 0.8 2.6 0.4 2.3
GB2 (Berm) 20.5 688.7 13.8 14.9 4.8 0.3 400.2 11.3 23.4 3.1 12.8 2.8 0.8 2.6 0.4 2.4
GB3 (Berm) 19.7 687.3 13.5 15.4 3.9 0.3 374.9 12.3 24.8 3.4 13.4 2.9 0.8 2.6 0.4 2.4
GB4 (Berm) 19.9 672.4 16.5 15.6 4.9 0.3 360.7 14.7 31.7 4.3 16.8 3.4 0.9 3.2 0.4 2.9
GB5 (Berm) 21.9 660.8 11.0 13.4 2.9 0.3 409.9 11.0 20.3 2.6 10.5 2.2 0.7 2.1 0.3 1.8
GD1 (Dune) 27.2 532.6 7.6 14.1 1.9 0.4 533.6 7.0 13.1 1.7 7.1 1.5 0.5 1.5 0.2 1.3
GD2 (Dune) 26.2 534.0 7.1 11.6 1.6 0.3 514.7 6.4 11.8 1.6 6.4 1.4 0.5 1.3 0.2 1.2
GD3 (Dune) 26.1 535.6 6.4 11.1 1.5 0.3 497.3 5.8 10.5 1.4 5.6 1.2 0.4 1.1 0.1 1.0
GD4 (Dune) 26.1 536.2 6.4 11.3 1.2 0.4 497.2 9.6 14.9 1.7 6.4 1.2 0.5 1.2 0.1 1.0
GD5 (Dune) 25.7 514.8 6.4 10.8 1.5 0.4 476.0 9.1 11.9 1.4 5.7 1.2 0.5 1.1 0.1 1.0
AVG. 24.8 595.9 8.7 12.5 2.2 0.3 476.3 8.4 15.6 2.1 8.2 1.7 0.6 1.6 0.2 1.5
MIN. 19.7 514.8 5.2 10.3 0.8 0.3 360.7 5.0 8.9 1.2 4.6 1.0 0.4 1.0 0.1 0.8
MAX. 28.8 688.7 16.5 16.2 4.9 0.4 572.2 14.7 31.7 4.3 16.8 3.4 0.9 3.2 0.4 2.9
ST.DEV. 3.2 63.9 3.8 2.2 1.4 0.0 69.8 3.2 7.3 1.0 4.0 0.8 0.2 0.8 0.1 0.7
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included in the sample batch to monitor and ensure data 
quality and accuracy. The SRMs chosen were BHVO-2 
(USGS; Hawaiian basalt), BCR-2 (USGS; Columbia River 
basalt), DNC-1 (USGS; North Carolina diabase), GSP-2 
(USGS; Colorado Silver Plume granodiorite, SCo-1 (USGS; 
Cody shale), and AGV-2 (USGS; Oregon Guano Valley 
andesite). Approximately 0.0500 g ± 0.0050 g of each pow-
dered SRM and unknown sample was weighed and put into 
an acid cleaned and labeled Teflon Savillex beaker. Once all 
samples were weighed, the bulk digestion process took five 
days, using distilled, ultra-clean acids and ultra-pure water 
in all steps. Powders were digested by HNO3:HF acid attack 
following the methods of Anderson et al., (2021), Lytle 
et al., (2012), and Kelley et al., (2003). See supplemental 
materials for the detailed methods.

Samples, standards, and total procedural blanks were ana-
lyzed for their elemental concentrations via a Thermo iCap 
Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 
coupled to a CETAC ASX-560 autosampler at the Trace 
Element and Radiogenic Isotope Laboratory (TRAIL) at the 
University of Arkansas. The ICP-MS was calibrated by using 
two multi-element standards (68 A, High Purity Solutions; 
71B Inorganic Ventures). Calibration curve measurements 
were made using a series of seven dilutions with concentra-
tions ranging from 1 µg/kg to 1000 µg/kg. The above ana-
lytical approach has previously been used in Wudke et al., 
(2024) and Flett et al., (2021).

Reflective Spectroscopy

The experimental substrates for reflective spectra measure-
ments were plastic Petri dishes painted with flat black spray 
paint. Approximately 5 g of sand split from each bulk sam-
ple (n = 15) were dried using the methods described ear-
lier (see: grain size characteristics). Spectra were acquired 
using a contact probe to acquire the most uniform or clean 
signal using an ASD FieldSpec 4 Hi-Res spectroradiom-
eter. This instrument has a spectral range of 350 to 2500 nm 
and spectral resolutions of 3 nm at 700 nm, and 8 nm at 
1400 nm and 2100 nm respectively for the visible (VIS), 
near infrared (NIR), and shortwave infrared (SWIR). This 
spectroradiometer is equipped with a modular silicon array 
and a Peltier-cooled InGaAs detector spectrometer platform. 
The instrument is equipped with a post-dispersive system 
for extremely low stray light which is at < 0.02% for 350 
to 1000 nm and < 0.1% for 1000 to 2500 nm. Low noise 
equivalent delta radiance (NeDL) values are 1.1 × 10–9 W/
cm2/sr/nm at 700 nm for UV/VNIR, 2.8 × 10–9 W/cm2/
sr/nm at 1400 nm for NIR and 5.6 × 10–8 W/cm2/sr/nm at 
2100 nm. Well established and accepted reflective spectros-
copy literature and the USGS spectral library was used to 
determine bond assignments for spectra (Curran et al. 1990; 
Cloutis 1989; Hunt 1977; Hunt et al. 1973; Hunt and Logan 
1972; Hunt et al. 1971a, b). Assignments were informed 
by mineral identifications based on PLM and PXRD data. 

Table 1   (continued)

Ho Er Tm Yb Lu Hf Ta Pb Th U

GS1 (Shore) 0.1 0.5 0.0 0.5 0.1 0.4 0.1 7.1 0.8 0.4
GS2 (Shore) 0.1 0.5 0.0 0.5 0.1 0.4 0.1 7.3 0.8 0.4
GS3 (Shore) 0.1 0.5 0.0 0.5 0.1 0.4 1.5 7.0 0.8 0.4
GS4 (Shore) 0.1 0.5 0.0 0.5 0.0 0.4 0.1 6.4 0.8 0.4
GS5 (Shore) 0.1 0.4 0.0 0.4 0.0 0.4 0.1 12.1 1.2 0.3
GB1 (Berm) 0.4 1.3 0.2 1.4 0.3 0.7 0.4 8.7 1.9 1.1
GB2 (Berm) 0.4 1.4 0.2 1.4 0.2 0.8 0.5 8.7 2.3 1.1
GB3 (Berm) 0.4 1.3 0.1 1.2 0.2 0.7 0.4 9.0 1.7 1.1
GB4 (Berm) 0.5 1.6 0.2 1.6 0.2 0.8 0.5 9.2 2.0 1.2
GB5 (Berm) 0.3 1.1 0.1 1.0 0.1 0.6 0.3 8.0 1.5 0.9
GD1 (Dune) 0.2 0.7 0.0 0.7 0.1 0.5 0.2 7.6 1.2 0.6
GD2 (Dune) 0.2 0.7 0.0 0.6 0.0 0.5 0.1 6.9 0.8 0.5
GD3 (Dune) 0.2 0.6 0.0 0.6 0.1 0.4 0.2 7.7 0.8 0.4
GD4 (Dune) 0.2 0.6 0.0 0.6 0.0 0.4 0.1 6.8 1.1 0.4
GD5 (Dune) 0.1 0.6 0.0 0.5 0.0 0.4 0.1 6.8 0.6 0.3
AVG. 0.2 0.8 0.0 0.8 0.1 0.5 0.3 8.0 1.2 0.6
MIN. 0.1 0.4 0.0 0.4 0.0 0.4 0.1 6.4 0.6 0.3
MAX. 0.5 1.6 0.2 1.6 0.3 0.8 1.5 12.1 2.3 1.2
ST.DEV. 0.1 0.4 0.1 0.4 0.1 0.1 0.4 1.4 0.5 0.3
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The instrument and similar methods as described above have 
been used in numerous previous investigations (e.g., Curtis 
et al. 2023; Krekeler et al. 2023; Barnes et al. 2020, Brum 

et al. 2020; Oglesbee et al. 2020; Burke et al. 2019; Allen 
and Krekeler, 2010; Krekeler and Allen 2008).

Results

Grain size characteristics

The grain size for all samples (n = 15) is unimodal except 
for one sample (Berm #5) which is bimodal (Fig. 2). The 
mode for both dune and shore sands is 462.5 µm. The mode 
for berm sands is slightly more variable being 327.5 µm 
(Berm 1, 2, 4), 390 µm (Berm 3), and 390 µm and 196 µm 
(Berm 5). Cumulative plots for each sample are provided in 
the Supplemental Materials Table 1, and uniformity coef-
ficients derived from these plots average 0.60 for dune, 0.64 
for berm, and 0.69 for shoreface.

Hydraulic Conductivity

Hydraulic conductivity (K) values were determined for one 
sample of each of the dune sand, berm sand, and shoreface 
sand (and the sample analysis replicated 3 times). Average 
values vary amongst the sample types and are 1.16 cm/s for 
dune sands, 1.07 cm/s for berm sands, and 1.49 cm/s for 
shoreface sands. The values of GOL samples fall within the 
range of well-sorted sands; however, their relatively high K 
values are also consistent with fine gravels (Fetter 2018). 
This is in part attributed to the high degree of sorting, the 
intragranular porosity, and the irregular grain shapes of the 
fossil grains.

Powder X‑ray diffraction (XRD)

Powder XRD results are shown in Fig. 3. Results indicate 
that quartz is the dominant mineral; however, several other 
peaks are identified. The commonly observed major peaks of 
quartz are d(101) = 3.34 Å and d(101) = 4.26 Å and commensu-
rate less intense peaks are often observed. Calcian-ordered 
albite is indicated by a major peak at d(002) =  ~ 3.18 Å. Other 
peaks present at ~ 3.83 Å, 3.70 Å, 3.47 Å, 3.31 Å, and 3.24 Å 
are consistent with ordered microcline, intermediate micro-
cline, and orthoclase. The exact identification of mixed feld-
spar species is challenging via XRD owing to the numerous 
potential peak overlaps and the presence of numerous feld-
spar species. A peak for amphibole was observed in some 
samples interpreted as the d(020) of ~ 8.50 to 8.40 Å. This is 
consistent with hornblende observed in PLM. The major 
peak and value that is observed for calcite is d(104) = 3.035 Å. 
However, peaks for calcite were near detection limits. Minor 
peaks observed at ~ 2.99 to 3.01 Å are consistent with pyrox-
ene minerals and Mg-calcite. Minor peaks near detection 

Fig. 3   Powder X-ray diffraction (XRD) patterns of sampled sands 
from the dune, berm, and shore environments of Playa las Golond-
rinas. Quartz, feldspars, hornblende, and Mg-calcite are the primary 
minerals present with their major lines labeled. Labels for minor 
peaks at (or near) detection limits for calcite, pyroxene and olivine are 
omitted for clarity. Owing to the complexity of the feldspar diffrac-
tion patterns and peak overlap only their major lines are labeled
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limits observed at ~ 2.83 Å to 2.79 Å are consistent with 
olivine (e.g., Chen 1977).

Polarized Light Microscopy (PLM)

PLM data indicates that the major and minor mineralogy of 
sands from the dune, berm, and shore are similar (Fig. 4a-h). 

Major minerals include quartz (up to 70%), plagioclase feld-
spar (up to 10%), minor olivine, pyroxene, and lithic clasts 
(total < 15%), fossil fragments (~ 15%), and less common 
grains of calcite, amphibole, oxides, and biotite (< 1%). 
Notably, lithic clasts often contain 5–10% oxides (Fig. 4f). 
Mineral grain sizes varied, but average diameters were gen-
erally 200–1000 µm throughout all samples and were con-
sistent with bulk grain size analysis.

Fig. 4   Polarized light microscopy (PLM) images for samples dune 
(a-c), berm (d-f), and shore (g,h) sands. In panels i-k, representa-
tive fossil fragments are shown: i) echinoderm, j) and k) fragmented 

forams. Plag plagioclase feldspar, Qtz quartz; LC lithic clast, Olv oli-
vine; Bt biotite; Cpx clinopyroxene; Cal calcite
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Microscopic fossils and fossil fragments were commonly 
observed (Fig. 4i-k). While specific species cannot reliably 
be identified owing to abrasion, general fossil types can 
be distinguished (e.g., AAPG 1978). Echinoderm plates 
are common and found in both the dune and berm sands. 
Foraminifera are common in all sand types. Mollusk frag-
ments are also observed, with some identified as gastropods 
owing to their spiral morphology shape and multi-chamber 

structure (e.g., Strekeisen 2020). Shell fragments are vari-
able in size from ~ 300 to 500 µm with altered or fragmented 
structures. A majority of the intragranular porosity is attrib-
uted to these fossils, with estimated average intragranular 
porosities of ~ 30% (typical diameters: 10–25 µm), ~ 25% 
(typical diameters: 7–25 µm), and ~ 25% (typical diameters: 
5–50 µm) for the dune, berm, and shore samples respectively.

Fig. 5   Representative SEM images with paired EDS spectra from the overall area. Major and minor spectra are labeled and are consistent with 
PLM and XRD observations
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Fig. 6   Select element vs. element graphs for sampled dune, berm, and shore sands. Consistently, berm samples exhibit higher wt. % Fe2O3 con-
tents accompanied by higher concentrations of Cr, As, Ni, and V (mg/kg). See text for discussion
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Scanning Electron Microscopy (SEM)

SEM observations of sands indicate a wide range of grain 
shapes to be present with ~ 85% being equant, ~ 10% being 
platy to elongated blocky, and ~ 5% being rod-like (Fig. 5a-
c). Grains are dominantly subangular and irregular in shape. 
Equant grains are primarily quartz and feldspar minerals, 
while the observed rod-like grains are primarily biologic 
(e.g., rounded coral). Minor platy to blocky grains are asso-
ciated with olivine and pyroxene minerals. The accompany-
ing EDS spectra of these sands is consistent with XRD and 
PLM data. Given the marine coastal setting, there is likely 
some contribution to the EDS spectra of Na, Cl, S, and Mg 
from seawater. SEM–EDS mapping of an example sand sam-
ple shows an uneven distribution of Na and Cl on multiple 
grain types (supplementary Fig. 1).

Inductively Coupled Plasma Mass Spectrometry 
(ICP‑MS)

ICP-MS data is provided in Table 1. Select element-element 
relationships between the GOL sands are summarized in 
Fig. 6. Berm sands are consistently higher in their abso-
lute abundances of wt. % Fe2O3, Cr, Ni, V, and As rela-
tive to the dune and shoreface sands. These elements show 
strong positive inter-element correlations (as shown in 
Fig. 6a-c,e,f). This is consistent with the presence of Fe-
oxides into which Cr, Ni, V, and As readily partition, all of 
which are siderophile. Within the context of elements that 
can be of environmental concern, Zn and Pb are shown in 
Fig. 6d with Pb abundances slightly higher (a few mg/kg) 
in the berm samples. Zinc abundances are similar within 
(and between) all sampled sands: 27–54 mg/kg. Berm sands 
consistently exhibit ~ 2–3 mg/kg higher As contents relative 
to dune and shoreface sands (Fig. 6d). Pearson correlation 
coefficients are summarized in supplementary Table 2 with 
positive and negative correlations attributed to the major and 
minor mineral phases identified and the minor presence of 
fossil materials. Additional element-element relationships 
are summarized in supplementary Fig. 2 and are consistent 
with the observed sample mineralogy.

To evaluate sampled sands as a potential geogenic back-
ground for Puerto Rico, the elemental abundances of sam-
pled sands are considered within the context of several of 
Earth’s geochemical reservoirs in Fig. 7a. Sampled sands 
are shown normalized to the primitive mantle (Sun and 
McDonough 1989). All sands exhibit very similar normal-
ized profiles with relative enrichment in the large ion litho-
phile elements (LILEs, e.g., Rb, Ba, Th), a Nb–Ta deple-
tion, and positive Pb anomaly. This geochemical profile is 
in part similar to that exhibited by the geological record 
of Puerto Rico which is also shown in Fig. 7a. This geo-
chemical similarity is consistent with the tectonomagmatic 

Fig. 7   a Primitive mantle-normalized spidergram (values after Sun 
and McDonough 1989) for sampled Playa las Golondrinas sands, 
upper continental crust (after Rudnick and Gao 2003), and igneous, 
sedimentary, and metamorphic rocks from Puerto Rico (database in 
Hu et  al. 2022). b Chondrite-normalized rare earth element (REE) 
profiles of sampled Playa las Golondrinas sands, upper continental 
crust, and the Puerto Rico database of Hu et  al. (2022). Chondrite 
normalization values after Nakamura (1974). c extended upper con-
tinental crust-normalized spidergram to include transition metals V, 
Zn, Cu, Ni, Cr, and As. See text for further discussion
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history of the region which has been characterized by con-
vergent margin tectonics and associated subduction-related 
processes since the Cretaceous (e.g., Ramos and Mann 2023; 
Hu et al. 2022; García-Casco et al. 2008). As shown, within 
the sampled GOL sands, the berm samples are consistently 
relatively enriched in most trace elements compared to the 
dune and shoreface sand samples. Also shown on Fig. 7a 
is the primitive mantle-normalized trace element profile of 
Earth’s upper continental crust (UCC) reservoir (Rudnick 
and Gao 2003). Compared to this geochemical reservoir, the 
GOL sands are relatively depleted in most of the trace ele-
ments shown, some by an order of magnitude. In Fig. 7b, the 
same datasets are shown normalized to a chondritic reservoir 
to evaluate rare earth element (REE) contents. As shown, 
all sampled GOL sands are depleted in REEs compared to 
Earth’s UCC and the Puerto Rican geological database, par-
ticularly with respect to the middle and heavy rare earth 
elements (Hu et al. 2022). As a sample suite, all GOL sands 
are relatively LREE-enriched with LaN/GdN from 3.6 to 6.6, 
similar to that of the UCC (LaN/GdN: 6.7; Rudnick and Gao 
2003, where “N” denotes the normalized value). Berm sands 
are relatively enriched in all REEs compared to the dune and 
shore sands. To illustrate the GOL sands depleted nature 
compared to the UCC reservoir, Fig. 7c shows an extended 
trace element spidergram and includes V, Zn, Cu, Ni, Cr and 
As. The GOL sands are depleted in all elements with the 
following exceptions: Arsenic (As) in all samples is higher 
than UCC (AsN from 2.0 to 3.2 with absolute abundances 
up to 15.3 mg/kg); V in the berm sands is slightly enriched 
(VN up to 1.5); Sr is enriched in all samples (SrN: 1.6–2.2); 
and one shore sample exhibits an anomalous positive Ta 
anomaly (TaN: 1.7).

Reflective spectroscopy

Reflective spectra of dune, berm, and shoreface sands are 
similar with absorption features at ~ 470 nm (Fe3+, Hunt 
1977), ~ 1400–1415 nm (OH, H2O, Hunt, et al. 1971a, b; 
Curran 1989), a strong feature at ~ 1930 nm (H2O and OH, 
Curran 1989), ~ 2210 nm (Al–OH groups, Hunt et al. 1973) 
small features at 2260 nm (OH), and a strong absorption 
feature at ~ 2350 nm (carbonate, Hunt 1977). These char-
acteristics are summarized in Fig. 8. Generally, the NIR 
region of spectra of the dune sand is ~ 5% more reflective 
than shoreface sands. The shoreface sands are in turn ~ 5% 
more reflective than berm sands. In the VIS and SWIR, spec-
tra functionally overlap and would likely not be statistically 
differentiated.

Discussion

Geogenic background

Detailed investigations of sands and other geologic materi-
als (e.g., soils) have the potential to improve understand-
ing of a region’s geochemical environmental background 
and help evaluate the relative contributions from geogenic 
and/or anthropogenic sources (e.g., Vandeuren et al. 2023; 
González-Guzmán et al. 2022; Papotto et al., 2022; Oglesbee 
et al. 2020; Barnes et al. 2020; Matsitsi et al. 2019; Dung 
et al. 2013; Jiang et al. 2013). A main contribution of this 
study is the establishment of elemental concentrations in 
sand media within the context of a geogenic background. It 
is anticipated that the establishment of this geochemical ref-
erence frame will help support future pollution studies, par-
ticularly for the coastal and urbanized regions of the island 
(Pérez-Alvelo et al. 2021; Wu et al., 2013; Apeti et al. 2012).

In 1957, the United States Geological Survey (USGS) 
reported findings from a reconnaissance study of Puerto 
Rico beach sands across the island. This work was con-
ducted to first identify “economic heavy minerals” and 
to subsequently locate their source rocks on the island. 
The most abundant heavy mineral identified was magnetite 
(often associated with ilmenite) and was reported to be 
present in all shore environments. In particular, sands in 
southern coastal regions were reported to have up to 20% 
magnetite (USGS 1957). A subsequent study by Meinecke 
(1972) characterized 24 beach sand samples from across 
the eastern, northern, and western coastal areas of Puerto 
Rico. This study reported a dominance of quartz, plagio-
clase as the major feldspar, and frequent calcareous shells 
(fragmented). Magnetite, ilmenite, and amphibole (often 
hornblende) were also reported as common with 75% of 

Fig. 8   Representative reflective spectra for dune, berm and shore 
sands showing relatively uniform absorption features among sample 
types
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the studied sands also reported to contain staurolite and 
rutile.

The strong linear correlations of siderophile elements 
(e.g., Mn, V, Cr, Ni, As) with total Fe2O3 in all the GOL 
sand samples are interpreted as geogenic in origin and are 
consistent with the presence of Fe-oxides (e.g., magnetite; 
Fig. 6, supplementary Table 2). If variable anthropogenic 
sources were introduced into the beach sediment from vehi-
cles and/or atmospheric deposition, extensive scatter would 
be expected. Similarly, if multiple geogenic sources were 
contributing to the beach environments at GOL, variable 
mineralogies and inconsistent co-variation of associated 
chemistries would also be expected. This is not observed 
(see Fig. 6). Based on the compositional similarity to the 
igneous, sedimentary, and metamorphic rock record of 
Puerto Rico (Fig. 7a-b), the presence of minerals associated 
with such lithologies (e.g., olivine, biotite, quartz), and the 
presence of shell fragments, local terrigenous and marine 
sources are inferred. 

The concentrations of Ni (up to ~ 11 mg/kg) and Cr (up 
to ~ 90 mg/kg), which have the potential to be pollutant met-
als, are interpreted here as representative of the natural geo-
genic background. All Ni is below that of average UCC with 
Cr below (or at) UCC values (see Fig. 7c). As noted earlier, 
Ni and Cr are interpreted as being associated with Fe-oxides 
but may also occur in olivine and pyroxene (e.g., Barnes 
et al. 2023; Jollands et al. 2023; Schoneveld et al. 2020). 
From PLM observations, olivine and pyroxene are present 
at < 5 wt. % and are therefore interpreted as contributing 
only minor amounts of Ni and Cr to the bulk sand com-
positions. Concentrations of other common potential metal 
pollutants in the environment include Cu, Pb, and Zn. For 
the sampled GOL sands, the absolute concentration of these 
elements is interpreted to be representative of the natural, 
geogenic background. This is consistent with the fact that 
no discrete Cu, Pb, or Zn-bearing mineral or anthropogenic 
phases (e.g., brass, lead metal) were observed via PLM or 
SEM.

In the GOL sands, As is present at concentrations approx-
imately 2 to 3 times higher than UCC values (Fig. 7c) and 
strongly correlates with total wt. % Fe2O3 (Fig. 7b). This 
correlation is consistent with the presence of Fe-oxides 
(e.g., magnetite). In addition, other trace elements which are 
known to be highly compatible in Fe-oxides are also consist-
ently present at higher concentrations in all berm samples 
(e.g., Mn, V, Cr; Table 1). The association of Fe2O3 and 
As is well-recognized due to As exhibiting solid solution 
in Fe-oxides, or being present as inclusions in Fe-oxides 
(e.g., Mamindy-Pajany et al. 2009; Giménez et al. 2007; 
Lakshmipathiraj et al. 2006) and Fe-sulfides (e.g., Qiu et al. 
2017; Mango and Ryan 2015; Kolker and Nordstrom 2001).

The absolute concentration of As and its association with 
wt. % Fe2O3 is a potentially important constraint in under-
standing As cycling in the local environment and evaluating 
the As geochemical budget. The presence of As, and to a 
certain extent V (Fig. 7c), at concentrations above that of 
UCC in the berm samples is interpreted as a winnowing 
effect where denser Fe-oxides and ferromagnesian minerals 
may be preferentially accumulating as winds mobilize less 
dense minerals (e.g., quartz). The interpretation of this win-
nowing effect on the berm sample mineralogy and chemistry 
is further supported by the observed higher concentrations 
of Zr, U, and REEs (Table 1), which are consistent with 
high-density phases such as zircon and REE-phosphates. 
At present, the exact form(s) of As in all sand samples are 
not known. It is therefore unknown if As is geochemically 
mobile in this environment. If mobile, there exists the poten-
tial for As release and exposure if sands experience variable 
redox conditions. No appreciable concentrations of critical 
minerals or critical metals (e.g., REEs) were observed in 
the GOL sands. Given the concentrations of critical ele-
ments observed, even secondary or tertiary concentrations 
of Fe-oxide (or ferromagnesian minerals) would likely not 
be of interest for any critical mineral production. This is 
consistent with the results of a recent USGS report (2022) 
which identified 445 "focus areas" within the United States 
as potential domestic sources of 13 critical minerals. One of 
these was in Puerto Rico, specifically in the southwestern 
region of the island.

In the context of hydrogeologic properties, the K val-
ues (1.16 cm/s for dune sands, 1.07 cm/s for berm sands, 
and 1.49 cm/s for shoreface sands) are comparatively high 
compared to that expected for the grain size distributions 
(up to 1.49 cm/s; see also; Fetter 2018; Das 2000). This 
difference is in part explained by the irregular subangular 
grain shapes observed amongst geogenic grains (e.g., quartz 
and feldspars; Fig. 4), combined with the internal porosity 
of biogenic grains and the angularity and irregular surface 
morphology (Fig. 5). These geotechnical constraints may be 
of use for addressing future pollution challenges. 

Providing detailed characterization of sands that domi-
nate Puerto Rico’s coastal environments could aid in future 
remote sensing investigations of pollution sources and 
environmental disasters (see also, Krekeler et al. 2023). For 
example, Allen and Krekeler (2010) demonstrated the util-
ity of reflective spectroscopy through the investigation of 
numerous petroleum-geogenic substrate combinations to 
support hyperspectral remote sensing of petroleum spills. 
Furthermore, Brum et al., (2020) investigated the reflective 
spectra of gasoline, diesel, and jet fuel-A on sand mate-
rials under a range of temperatures. For Puerto Rico and 
the Caribbean region, significant environmental risk exists 
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due to the frequency of hurricane, earthquake, tsunami, 
and landslide events (e.g., Ventura-Valentín and Brudzin-
ski, 2022; Lin et al. 2020; Kwasinski et al. 2019; Manaker 
et al. 2008; Boose et al. 2004; Dillon et al. 1999; Larsen 
and Torres-Sánchez 1998; Basnet et al. 1992; Scatena and 
Larsen 1991). Given these regional hazards, investigations 
of coastal sands from across Puerto Rico could further sup-
port future environmental and remote sensing studies (e.g., 
Pérez Valentín and Müller 2020) by facilitating the more 
robust identification and characterization of target materials 
in the environment.

Conclusions

This study provides a comprehensive mineralogical and geo-
chemical investigation of sands from Playa las Golondrinas 
in northern Puerto Rico. The datasets provided here con-
tribute to defining an environmental (geogenic) background 
for the local region and demonstrate the utility of sand as a 
medium from which a geochemical reference framework can 
be derived. Sands sampled from the dune, berm, and shore 
environments are characterized by a unimodal grain size and 
dominated by quartz, plagioclase feldspar, and lithic clasts 
as confirmed by microscopy (PLM and SEM), powder XRD, 
and reflective spectroscopy. Bulk element concentrations 
from all three coastal environments are consistent with deri-
vation from arc-related rocks in Puerto Rico’s interior (i.e., 
LILE enrichment, Pb-enrichment, and associated Nb–Ta 
depletion). The majority of bulk elemental concentrations 
are below that of Earth’s average upper continental crust and 
element Mco-variation trends are interpreted as geogenic, 
not anthropogenic, in origin. Particularly, berm sands are 
consistently enriched in Fe, Mn, Ni, Cr, V, and As com-
pared to dune and shoreface environments. This enrichment 
is interpreted to reflect a wind-related winnowing effect in 
the coastal environment where denser Fe-oxide phases accu-
mulate. Within the context of potential elements of environ-
mental concern (e.g., Cu, Zn, Pb), no discrete anthropogenic 
metal-bearing phases or particles were observed.

Results from this investigation provide bulk material 
property constraints that have the potential to aid in more 
accurate interpretations of current and future remote sensing 
imagery. This could help support decision-making related 
to environmental conservation and emergency management 
throughout the region. This new mineralogical and geo-
chemical dataset also provides local and regional context 
for metal pollution, particularly given the ongoing impact 
of industry and coal pollution in Puerto Rico.
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